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Conventional quantum matter:

|. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles

Luttinger’s theorem:
volume enclosed by
Er the Fermi surface =
E density of all electrons
0 (mod 2 per unit cell).
Obeyed in overdoped

cuprates




Topological quantum matter:

|. Ground states disconnected from independent

electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

(a) The fractional quantum Hall effect: the ground state is
described by Laughlin’s wavefunction, and the

excitations are quasiparticles which carry fractional
charge.

(b) The pseudogap metal: proposed to have electron-like
quasiparticles but on a “small” Fermi surface which
does not obey the Luttinger theorem.



Quantum matter without quasiparticles:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal
doping in the the cuprate high temperature superconductors.

But how can we be sure that no quasiparticles exist in a
given system! Perhaps there are some exotic quasiparticles
inaccessible to current experiments........



Local thermal equilibration or
phase coherence time, 7,:

e There is an lower bound on 7, in all many-body quantum
systems of order A/(kgT),

n
O_
o= YL oT

and the lower bound is realized by systems
without quasiparticles.

e In systems with quasiparticles, 7, is parametrically larger
at low 17
e.g. in Fermi liquids 7, ~ 1/T°%,
and 1n gapped insulators 7, ~ e/ (kBT) where A is the
energy gap.

S. Sachdev, Quantum Phase Transitions, Cambridge (1999)



A bound on quantum chaos:

e The time over which a many-body quantum
system becomes “chaotic” is given by 77 =
1/Ar, where Az, is the “Lyapunov exponent”
determining memory of initial conditions. This
LYAPUNOV TIME obeys the rigorous lower bound

>1 h
-
L_QWkBT

A.l. Larkin and Y. N. Ovchinnikov, |ETP 28, 6 (1969)
J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409



A bound on quantum chaos:

e The time over which a many-body quantum
system becomes “chaotic” is given by 77 =
1/Ar, where Az, is the “Lyapunov exponent”
determining memory of initial conditions. This
LYAPUNOV TIME obeys the rigorous lower bound
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Quantum matter without quasiparticles
~ fastest possible many-body quantum chaos
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e Black holes have a “ring-down” time, 7,., in which they radiate
energy, and stabilize to a ‘featureless’ spherical object. This time
can be computed in Einstein’s general relativity theory.

e For this black hole 7,, = 7.7 milliseconds. (Radius of black hole
= 183 km; Mass of black hole = 62 solar masses.)



Hanford, Washington (H1) Livingston, Louisiana (L1)

' L

1 1 \J ] A

A |
c : b
£ :
Reconstructed (wavelet) 1/ Reconstructed (wavelet)
—W wt:) H ! -W W’ i i
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45
Time (s) Time (s)
Inspiral Merger Ring-

“T LIGO

Q O ¢O September 14,2015

e ‘Featureless’ black holes have a Bekenstein-Hawking
entropy, and a Hawking temperature, T}.
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e Lixpressed in terms of the Hawking temperature,
the ring-down time is 7. ~ h/(kgTy) !

e For this black hole Ty =~ 1 nK.



The Sachdev-Ye-Kitaev Figure credit: L. Balents
(SYK) model: '

e A theory of a
strange metal

e Has a dual
representation

as a black hole

......................
cove
-
-

e Fastest possible
quantum chaos

h
27T]{TBT

with T, —



Infinite-range model with guasiparticles

H = 1/2 Z twczcﬁ

1,7=1

cici +cjc; =0 | C.CT- + ch-cZ- = 04
r -

t;; are independent random variables with ¢;; = 0 and |t;;]% = t°

Fermions occupying the eigenstates of a
N x N random matrix



Infinite-range model with guasiparticles

Feynman graph expansion in t¢;; , and graph-by-graph average,
yields exact equations in the large N limit:
1
iw 4 b — N(iw)
Gir=0")=0Q.

Giw) = . X(1) = t*°G(T)
G(w) can be determined by solving a quadratic equation.

A

—Im G(w)




Infinite-range model with guasiparticles

Now add weak interactions

N N
1 1
H = /2 tijC,:-er | 3/2 Jij;kﬁ CIC}L-C]{CK
W 2 NP, 2
’L,]Zl iajak'aez]-

Jii.ke are independent random variables with m = 0 and |J;;.x¢|? = J?. We
compute the lifetime of a quasiparticle, 7., in an exact eigenstate (i) of the
free particle Hamitonian with energy F,. By Fermi’s Golden rule, for E,, at the
Fermi energy

Ti = 7.J%p} / dEgdEydEs f(Ep)(1 — f(Ey))(1 = f(Es))(Ea + Ep — Ey — Ejs)
- WBJQPSTQ
4

where pg is the density of states at the Fermi energy.

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ~ T2 at the Fermi level.




SYK model

To obtain a non-Fermi liquid, we set ¢;; = O:

1
Hsyk = (2N)3/2 Z Jij. MC Ckcg MZC
7..77k7'é 1

Q== CJ;LCi

Hgvi 1s similar, and has identical properties, to the SY model.

°° A fermion can move only
Ji15611 ce by entangling with another
- fermion: the Hamiltonian
has “nothing but
entanglement” .

Jg.9.12.14
® 14

S.Sachdev and J.Ye, Phys. Rev. Lett. 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless
and obey

1 A

o) =p— Vit Gle)= -~

for some complex A. The ground state is a non-Fermi liquid, with
a continuously variable density O.

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

e T =0 Green’s function G ~ 1/4/7
S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

e T =0 Green’s function G ~ 1/4/7

e I > 0 Green’s function implies conformal invariance
. 1/2
G ~ 1/(8111(7TT7‘)) / A. Georges and O. Parcollet PRB 59, 5341 (1999)



SYK model

e T =0 Green’s function G ~ 1/4/7

e I > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nT7))/?

e Non-zero entropy as T'— 0, S(T"— 0) = NSy + ...
A. Georges, O. Parcollet, and S. Sachdey, Phys. Rev. B 63, 134406 (2001)



SYK model

T = 0 Green’s function G ~ 1/4/7

T > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nT7))/?
Non-zero entropy as T'— 0, S(T'— 0) = NSy + . ..

These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory ot black
holes with AdSs near-horizon geometry. The Bekenstein-
Hawking entropy is IV.S. S. Sachdev, PRL 105, 151602 (2010)

The dependence of Sy on the density @ matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdSs
horizons in a large class of gravity theories.

S. Sachdev, PRX 5, 041025 (2015)



Einstein-Maxwell theory

+ cosmological constant
charge

AdS. x T density O
2

ds* = (d¢? — dt?*)/(? + dx?
Gauge field: A = (£/()dt

SYK and AdS>

S| = g

PHYSICAL REVIEW LETTERS [05, 151602 (2010)

S

Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 June 2010; published 4 October 2010)

We show that there 1s a close correspondence between the physical properties of holographic metals
near charged black holes in anti—de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the
lattice Anderson model. The latter phase has a ““small” Fermi surface of conduction electrons, along with
a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids
are states of matter at nonzero density realizing the near-horizon, AdS, X R? physics of Reissner-
Nordstrom black holes.



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-
Ward functional

A / DG(Tl, TZ)DZ(TL 7-2) exp(—NS) A. Georges, O. Parcollet, and S. Sachdey,
Phys. Rev. B 63, 134406 (2001)

S =1Indet [6(T — 72)(0r, + 1) — 2(11,T2)]

+/d71d722(71,72) G(79,m1) + (J?/2)G*(72,71)G* (11, T2)]



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-

Ward functional

A / DG(Tl, TZ)DZ(TL 7-2) exp(—NS) A. Georges, O. Parcollet, and S. Sachdey,
Phys. Rev. B 63, 134406 (2001)

S =1Indet [6(m — 12)(FL + 1) — X(11, 7))
i /dTldTQZ(Tl,TQ) [G(Tg,ﬁ) + (J2/2)G2(7-2,Tl)G2(7-177-2)]

At frequencies < J, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O Parcollet
PRB 59, 5341 (1999)
T = f(O') A. Kitaev, unpublished
(o1) S. Sachdev, PRX 5, 041025 (2015)
—1/4 o)
Glri,m) = [ (01) /" (02)] " LI Glo1, 00)
g(o2)
—3/4 9(01
S(r1,m) = [F(00) £ (02)] " 27 (04, )
g(o2)

where f(o) and g(o) are arbitrary functions.



SYK model

Let us write the large IV saddle point solutions of S as

Gs(ri —m2) ~ (11 —72) 712 S(m — 1) ~ (11— 72) %2
These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

Let us write the large IV saddle point solutions of S as

f‘_i(’ﬁ —T‘)\N(’ﬁ —703_1/2 . Zg(’ﬁ —T‘)\N(’ﬁ —703_3/2.
o/ Connections of SYK to gravity and Adsgx -
val - horizons

e Reparameterization and gauge
So invariance are the ‘symmetries’ of .
she Einstein-Maxwell theory of
ocravity and electromagnetism

4L

k e SL(2,R) is the isometry group of Adsy

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

Let us write the large IV saddle point solutions of S as

—1/2

GS(Tl—TQ)N(Tl—TQ) ] ES(Tl_TQ)N(Tl—TQ)_S/Q.

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode
Expand about the saddle point by writing

G(r1,72) = [f' (1) f ()]G (f(11) — f(72))

(and similarly for ) and obtain an effective action for f(7). This action
does not vanish because of the time derivative in the determinant which is
not reparameterization invariant.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

. 1
With g(7) = e %(7) the action for ¢(7) and f(7) = —F tan(7wT (7 + €(7))

T

fluctuations is

o pUT o UT
S, s = 5/0 d7(67¢+i(27r8T)8Te)2—R/0 dr {f.7},

where { f, 7} is the Schwarzian:

_ S 3 (Y
=3 (5)

The couplings are given by thermodynamics (€2 is the grand potential)

0°() 0°()
K =— <—> . Y +HATEPK = — (—>
op? ) 1% )
Sy
2mE = ——=
& 50

Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished



SYK and AdS; |
With ¢(7) = e~ (") the action for ¢(7) and f(7) = — tan(7wT (1 + €(7))

fluctuations is

o pUT o UT
S, = 5/0 d7(67¢+i(27r8T)8Te)2—R/0 dr {f. 7},

where { f, 7} is the Schwarzian:

_ S 3 (Y
=3 (5)

e The same effective action is obtained from the Reissner-Nordstrom-
AdS black hole of Einstein-Maxwell theory in 4 dimensions, after a

dimensional direction to AdS, x T2, valid when the temperature is
smaller than a scale set by the size of T2.

e The Lyapunov time to quantum chaos saturates the lower bound both
in the SYK model and in the gravity theory.

1 A A. Kitaev, KITP talk, 2015
TL — O kT J- Maldacena and D. Stanford, arXiv:1604.07818
T KRB Wenbo Fu,Yingfei Gu, S. Sachdev, unpublished
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Entangled quantum matter without quasiparticles

e Is there a connection between

strange metals and black holes?
Yes, e.g. the SYK model.

e Why do they have the same
equilibration time ~ h/(kpT)?
Strange metals don’t have
quasiparticles and thermalize rapidly;
Black holes are “fast scramblers”.

e Theoretical predictions for strange metal
transport in graphene agree well with experiments



